openseries.constrain_optimized_portfolios
- openseries.constrain_optimized_portfolios(data, serie, portfolioname='Current Portfolio', simulations=10000, curve_points=200, bounds=None, minimize_method='SLSQP')[source]
Constrain optimized portfolios to those that improve on the current one.
- Parameters:
data (OpenFrame) – Portfolio data.
serie (OpenTimeSeries) – A timeseries representing the current portfolio.
portfolioname (str) – Name of the portfolio. Defaults to “Current Portfolio”.
simulations (int) – Number of possible portfolios to simulate. Defaults to 10000.
curve_points (int) – Number of optimal portfolios on the efficient frontier. Defaults to 200.
bounds (tuple[tuple[float, float], ...] | None) – The range of minimum and maximum allowed allocations for each asset.
minimize_method (LiteralMinimizeMethods) – The method passed into the scipy.minimize function. Defaults to SLSQP.
- Returns:
The constrained optimal portfolio data.
- Return type:
tuple[OpenFrame, OpenTimeSeries, OpenFrame, OpenTimeSeries]