OpenFrame
- class openseries.OpenFrame(constituents, weights=None)[source]
Bases:
_CommonModel[Series]OpenFrame objects hold OpenTimeSeries in the list constituents.
The intended use is to allow comparisons across these timeseries.
- Parameters:
- constituents: list[OpenTimeSeries]
- tsdf: DataFrame
- __init__(constituents, weights=None)[source]
OpenFrame objects hold OpenTimeSeries in the list constituents.
The intended use is to allow comparisons across these timeseries.
- from_deepcopy()[source]
Create copy of the OpenFrame object.
- merge_series(how='outer')[source]
Merge index of Pandas Dataframes of the constituent OpenTimeSeries.
- all_properties(properties=None)[source]
Calculate chosen timeseries properties.
- Parameters:
properties (list[Literal['value_ret', 'geo_ret', 'arithmetic_ret', 'vol', 'downside_deviation', 'ret_vol_ratio', 'sortino_ratio', 'kappa3_ratio', 'z_score', 'skew', 'kurtosis', 'positive_share', 'var_down', 'cvar_down', 'vol_from_var', 'worst', 'worst_month', 'max_drawdown', 'max_drawdown_date', 'max_drawdown_cal_year', 'first_indices', 'last_indices', 'lengths_of_items', 'span_of_days_all']] | None) – The properties to calculate. Defaults to calculating all available. Optional.
self (Self)
- Returns:
Properties of the constituent OpenTimeSeries.
- Return type:
- property lengths_of_items: Series[int]
Number of observations of all constituents.
- Returns:
Number of observations of all constituents.
- property item_count: int
Number of constituents.
- Returns:
Number of constituents.
- property columns_lvl_zero: list[str]
Level 0 values of the MultiIndex columns in the .tsdf DataFrame.
- Returns:
Level 0 values of the MultiIndex columns in the .tsdf DataFrame.
- property columns_lvl_one: list[ValueType]
Level 1 values of the MultiIndex columns in the .tsdf DataFrame.
- Returns:
Level 1 values of the MultiIndex columns in the .tsdf DataFrame.
- property first_indices: Series[dt.date]
The first dates in the timeseries of all constituents.
- Returns:
The first dates in the timeseries of all constituents.
- property last_indices: Series[dt.date]
The last dates in the timeseries of all constituents.
- Returns:
The last dates in the timeseries of all constituents.
- property span_of_days_all: Series[int]
Number of days from the first date to the last for all items in the frame.
- Returns:
Number of days from the first date to the last for all items in the frame.
- value_to_ret()[source]
Convert series of values into series of returns.
- value_to_diff(periods=1)[source]
Convert series of values to series of their period differences.
- to_cumret()[source]
Convert series of returns into cumulative series of values.
- resample(freq='BME')[source]
Resample the timeseries frequency.
- resample_to_business_period_ends(freq='BME', method='nearest')[source]
Resamples timeseries frequency to the business calendar month end dates.
Stubs left in place. Stubs will be aligned to the shortest stub.
- Parameters:
- Returns:
An OpenFrame object.
- Return type:
- ewma_risk(lmbda=0.94, day_chunk=11, dlta_degr_freedms=0, first_column=0, second_column=1, corr_scale=2.0, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Exponentially Weighted Moving Average Volatilities and Correlation.
Exponentially Weighted Moving Average (EWMA) for Volatilities and Correlation.
Reference: https://www.investopedia.com/articles/07/ewma.asp.
- Parameters:
lmbda (float) – Scaling factor to determine weighting. Defaults to 0.94.
day_chunk (int) – Sampling the data which is assumed to be daily. Defaults to 11.
dlta_degr_freedms (int) – Variance bias factor taking the value 0 or 1. Defaults to 0.
first_column (int) – Column of first timeseries. Defaults to 0.
second_column (int) – Column of second timeseries. Defaults to 1.
corr_scale (float) – Correlation scale factor. Defaults to 2.0.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Series volatilities and correlation.
- Return type:
DataFrame
- property correl_matrix: DataFrame
Correlation matrix.
This property returns the correlation matrix of the time series in the frame.
- Returns:
Correlation matrix of the time series in the frame.
- add_timeseries(new_series)[source]
To add an OpenTimeSeries object.
- delete_timeseries(lvl_zero_item)[source]
To delete an OpenTimeSeries object.
- trunc_frame(start_cut=None, end_cut=None, where='both')[source]
Truncate DataFrame such that all timeseries have the same time span.
- Parameters:
start_cut (dt.date | None) – New first date. Optional.
end_cut (dt.date | None) – New last date. Optional.
where (LiteralTrunc) – Determines where dataframe is truncated also when start_cut or end_cut is None. Defaults to both.
self (Self)
- Returns:
An OpenFrame object.
- Return type:
Self
- relative(long_column=0, short_column=1, *, base_zero=True)[source]
Calculate cumulative relative return between two series.
- Parameters:
- Return type:
None
- tracking_error_func(base_column=-1, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Tracking Error.
Calculates Tracking Error which is the standard deviation of the difference between the fund and its index returns.
Reference: https://www.investopedia.com/terms/t/trackingerror.asp.
- Parameters:
base_column (tuple[str, ValueType] | int) – Column of timeseries that is the denominator in the ratio. Defaults to -1.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Tracking Errors.
- Return type:
Series[float]
- info_ratio_func(base_column=-1, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Information Ratio.
The Information Ratio equals ( fund return less index return ) divided by the Tracking Error. And the Tracking Error is the standard deviation of the difference between the fund and its index returns. The ratio is calculated using the annualized arithmetic mean of returns.
- Parameters:
base_column (tuple[str, ValueType] | int) – Column of timeseries that is the denominator in the ratio. Defaults to -1.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Information Ratios.
- Return type:
Series[float]
- capture_ratio_func(ratio, base_column=-1, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Capture Ratio.
The Up (Down) Capture Ratio is calculated by dividing the CAGR of the asset during periods that the benchmark returns are positive (negative) by the CAGR of the benchmark during the same periods. CaptureRatio.BOTH is the Up ratio divided by the Down ratio. Source: ‘Capture Ratios: A Popular Method of Measuring Portfolio Performance in Practice’, Don R. Cox and Delbert C. Goff, Journal of Economics and Finance Education (Vol 2 Winter 2013).
Reference: https://www.economics-finance.org/jefe/volume12-2/11ArticleCox.pdf.
- Parameters:
ratio (LiteralCaptureRatio) – The ratio to calculate.
base_column (tuple[str, ValueType] | int) – Column of timeseries that is the denominator in the ratio. Defaults to -1.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Capture Ratios.
- Return type:
Series[float]
- beta(asset, market, dlta_degr_freedms=1)[source]
Market Beta.
Calculates Beta as Co-variance of asset & market divided by Variance of the market.
Reference: https://www.investopedia.com/terms/b/beta.asp.
- Parameters:
- Returns:
Beta as Co-variance of x & y divided by Variance of x.
- Return type:
- ord_least_squares_fit(y_column, x_column, *, fitted_series=True)[source]
Ordinary Least Squares fit.
Performs a linear regression and adds a new column with a fitted line using Ordinary Least Squares fit.
- Parameters:
y_column (tuple[str, ValueType] | int) – The column level values of the dependent variable y.
x_column (tuple[str, ValueType] | int) – The column level values of the exogenous variable x.
fitted_series (bool) – If True the fit is added as a new column in the .tsdf Pandas.DataFrame. Defaults to True.
self (Self)
- Returns:
A dictionary with the coefficient, intercept and rsquared outputs.
- Return type:
- jensen_alpha(asset, market, riskfree_rate=0.0, dlta_degr_freedms=1)[source]
Jensen’s alpha.
The Jensen’s measure, or Jensen’s alpha, is a risk-adjusted performance measure that represents the average return on a portfolio or investment, above or below that predicted by the capital asset pricing model (CAPM), given the portfolio’s or investment’s beta and the average market return. This metric is also commonly referred to as simply alpha.
Reference: https://www.investopedia.com/terms/j/jensensmeasure.asp.
- Parameters:
asset (tuple[str, ValueType] | int) – The column of the asset.
market (tuple[str, ValueType] | int) – The column of the market against which Jensen’s alpha is measured.
riskfree_rate (float) – The return of the zero volatility riskfree asset. Defaults to 0.0.
dlta_degr_freedms (int) – Variance bias factor taking the value 0 or 1. Defaults to 1.
self (Self)
- Returns:
Jensen’s alpha.
- Return type:
- make_portfolio(name, weight_strat=None)[source]
Calculate a basket timeseries based on the supplied weights.
- rolling_info_ratio(long_column=0, short_column=1, observations=21, periods_in_a_year_fixed=None)[source]
Calculate rolling Information Ratio.
The Information Ratio equals ( fund return less index return ) divided by the Tracking Error. And the Tracking Error is the standard deviation of the difference between the fund and its index returns.
- Parameters:
long_column (int) – Column of timeseries that is the numerator in the ratio. Defaults to 0.
short_column (int) – Column of timeseries that is the denominator in the ratio. Defaults to 1.
observations (int) – The length of the rolling window to use is set as number of observations. Defaults to 21.
periods_in_a_year_fixed (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1), Le(le=366)])] | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Rolling Information Ratios.
- Return type:
- rolling_beta(asset_column=0, market_column=1, observations=21, dlta_degr_freedms=1)[source]
Calculate rolling Market Beta.
Calculates Beta as Co-variance of asset & market divided by Variance of the market.
Reference: https://www.investopedia.com/terms/b/beta.asp.
- Parameters:
asset_column (int) – Column of timeseries that is the asset. Defaults to 0.
market_column (int) – Column of timeseries that is the market. Defaults to 1.
observations (int) – The length of the rolling window to use is set as number of observations. Defaults to 21.
dlta_degr_freedms (int) – Variance bias factor taking the value 0 or 1. Defaults to 1.
self (Self)
- Returns:
Rolling Betas.
- Return type:
- rolling_corr(first_column=0, second_column=1, observations=21)[source]
Calculate rolling Correlation.
Calculates correlation between two series. The period with at least the given number of observations is the first period calculated.
- Parameters:
first_column (int) – The position as integer of the first timeseries to compare. Defaults to 0.
second_column (int) – The position as integer of the second timeseries to compare. Defaults to 1.
observations (int) – The length of the rolling window to use is set as number of observations. Defaults to 21.
self (Self)
- Returns:
Rolling Correlations.
- Return type:
- multi_factor_linear_regression(dependent_column)[source]
Perform a multi-factor linear regression.
This function treats one specified column in the DataFrame as the dependent variable (y) and uses all remaining columns as independent variables (X). It utilizes a scikit-learn LinearRegression model and returns a DataFrame with summary output and an OpenTimeSeries of predicted values.
- Parameters:
- Returns:
A DataFrame with the R-squared, the intercept and the regression coefficients
An OpenTimeSeries of predicted values
- Return type:
A tuple containing
- Raises:
KeyError – If the column tuple is not found in the OpenFrame.tsdf.columns.
ValueError – If not all series are returnseries (ValueType.RTRN).
- model_config = {'arbitrary_types_allowed': True, 'revalidate_instances': 'always', 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- rebalanced_portfolio(name, items=None, bal_weights=None, frequency=1, cash_index=None, *, equal_weights=False, drop_extras=True)[source]
Create a rebalanced portfolio from the OpenFrame constituents.
- Parameters:
name (str) – Name of the portfolio.
items (list[str] | None) – List of items to include in the portfolio. If None, uses all items. Optional.
bal_weights (list[float] | None) – List of weights for rebalancing. If None, uses frame weights. Optional.
frequency (int) – Rebalancing frequency. Defaults to 1.
cash_index (OpenTimeSeries | None) – Cash index series for cash component. Optional.
equal_weights (bool) – If True, use equal weights for all items. Defaults to False.
drop_extras (bool) – If True, only return TWR series; if False, return all details. Defaults to True.
self (Self)
- Returns:
OpenFrame containing the rebalanced portfolio.
- Return type:
OpenFrame
The OpenFrame class manages collections of OpenTimeSeries objects and provides functionality for:
Multi-asset analysis and comparison
Portfolio construction and optimization
Correlation and regression analysis
Risk attribution and factor analysis
Batch processing of multiple time series
Class Methods for Construction
Properties
Frame-specific Properties
- OpenFrame.constituents: list[OpenTimeSeries]
- OpenFrame.columns_lvl_zero
Level 0 values of the MultiIndex columns in the .tsdf DataFrame.
- Returns:
Level 0 values of the MultiIndex columns in the .tsdf DataFrame.
- OpenFrame.columns_lvl_one
Level 1 values of the MultiIndex columns in the .tsdf DataFrame.
- Returns:
Level 1 values of the MultiIndex columns in the .tsdf DataFrame.
- OpenFrame.item_count
Number of constituents.
- Returns:
Number of constituents.
- OpenFrame.first_indices
The first dates in the timeseries of all constituents.
- Returns:
The first dates in the timeseries of all constituents.
- OpenFrame.last_indices
The last dates in the timeseries of all constituents.
- Returns:
The last dates in the timeseries of all constituents.
- OpenFrame.lengths_of_items
Number of observations of all constituents.
- Returns:
Number of observations of all constituents.
- OpenFrame.span_of_days_all
Number of days from the first date to the last for all items in the frame.
- Returns:
Number of days from the first date to the last for all items in the frame.
Common Properties
- OpenFrame.first_idx
The first date in the timeseries.
- Returns:
The first date in the timeseries.
- OpenFrame.last_idx
The last date in the timeseries.
- Returns:
The last date in the timeseries.
- OpenFrame.length
Number of observations.
- Returns:
Number of observations.
- OpenFrame.span_of_days
Number of days from the first date to the last.
- Returns:
Number of days from the first date to the last.
- OpenFrame.tsdf: DataFrame
- OpenFrame.max_drawdown_date
Date when the maximum drawdown occurred.
Reference: https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp.
Returns:
- datetime.date | pandas.Series[dt.date]
Date when the maximum drawdown occurred
- OpenFrame.periods_in_a_year
The average number of observations per year.
- Returns:
The average number of observations per year.
- OpenFrame.yearfrac
Length of series in years assuming 365.25 days per year.
- Returns:
Length of the timeseries in years assuming 365.25 days per year.
Financial Metrics
- OpenFrame.all_properties = <function OpenFrame.all_properties>[source]
- Parameters:
self (Self)
properties (list[Literal['value_ret', 'geo_ret', 'arithmetic_ret', 'vol', 'downside_deviation', 'ret_vol_ratio', 'sortino_ratio', 'kappa3_ratio', 'z_score', 'skew', 'kurtosis', 'positive_share', 'var_down', 'cvar_down', 'vol_from_var', 'worst', 'worst_month', 'max_drawdown', 'max_drawdown_date', 'max_drawdown_cal_year', 'first_indices', 'last_indices', 'lengths_of_items', 'span_of_days_all']] | None)
- Return type:
- OpenFrame.arithmetic_ret
Annualized arithmetic mean of returns.
Reference: https://www.investopedia.com/terms/a/arithmeticmean.asp.
Returns:
- SeriesOrFloat_co
Annualized arithmetic mean of returns. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.geo_ret
Compounded Annual Growth Rate (CAGR).
Reference: https://www.investopedia.com/terms/c/cagr.asp.
Returns:
- SeriesOrFloat_co
Compounded Annual Growth Rate (CAGR). Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.value_ret
Simple return.
Returns:
- SeriesOrFloat_co
Simple return. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.vol
Annualized volatility.
Based on Pandas .std() which is the equivalent of stdev.s([…]) in MS Excel.
Reference: https://www.investopedia.com/terms/v/volatility.asp.
Returns:
- SeriesOrFloat_co
Annualized volatility. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.downside_deviation
Downside Deviation.
Standard deviation of returns that are below a Minimum Accepted Return of zero. It is used to calculate the Sortino Ratio.
Reference: https://www.investopedia.com/terms/d/downside-deviation.asp.
Returns:
- SeriesOrFloat_co
Downside deviation. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.ret_vol_ratio
Ratio of annualized arithmetic mean of returns and annualized volatility.
Returns:
- SeriesOrFloat_co
Ratio of the annualized arithmetic mean of returns and annualized volatility. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.sortino_ratio
Sortino ratio.
Reference: https://www.investopedia.com/terms/s/sortinoratio.asp.
Returns:
- SeriesOrFloat_co
Sortino ratio calculated as the annualized arithmetic mean of returns / downside deviation. The ratio implies that the riskfree asset has zero volatility, and a minimum acceptable return of zero. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.kappa3_ratio
Kappa-3 ratio.
The Kappa-3 ratio is a generalized downside-risk ratio defined as annualized arithmetic return divided by the cubic-root of the lower partial moment of order 3 (with respect to a minimum acceptable return, MAR). It penalizes larger downside outcomes more heavily than the Sortino ratio (which uses order 2).
Returns:
- SeriesOrFloat_co
Kappa-3 ratio calculation with the riskfree rate and. Minimum Acceptable Return (MAR) both set to zero. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.omega_ratio
Omega ratio.
Reference: https://en.wikipedia.org/wiki/Omega_ratio.
Returns:
- SeriesOrFloat_co
Omega ratio calculation. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.var_down
Downside 95% Value At Risk (VaR).
The equivalent of percentile.inc([…], 1-level) over returns in MS Excel. https://www.investopedia.com/terms/v/var.asp.
Returns:
- SeriesOrFloat_co
Downside 95% Value At Risk (VaR). Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.cvar_down
Downside 95% Conditional Value At Risk “CVaR”.
Reference: https://www.investopedia.com/terms/c/conditional_value_at_risk.asp.
Returns:
- SeriesOrFloat_co
Downside 95% Conditional Value At Risk “CVaR”. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.worst
Most negative percentage change.
Returns:
- SeriesOrFloat_co
Most negative percentage change. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.worst_month
Most negative month.
Returns:
- SeriesOrFloat_co
Most negative month. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.max_drawdown
Maximum drawdown without any limit on date range.
Reference: https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp.
Returns:
- SeriesOrFloat_co
Maximum drawdown without any limit on date range. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.max_drawdown_cal_year
Maximum drawdown in a single calendar year.
Reference: https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp.
Returns:
- SeriesOrFloat_co
Maximum drawdown in a single calendar year. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.positive_share
The share of percentage changes that are greater than zero.
Returns:
- SeriesOrFloat_co
The share of percentage changes that are greater than zero. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.vol_from_var
Implied annualized volatility from Downside 95% Value at Risk.
Assumes that returns are normally distributed.
Returns:
- SeriesOrFloat_co
Implied annualized volatility from the Downside 95% VaR using the assumption that returns are normally distributed. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.skew
Skew of the return distribution.
Reference: https://www.investopedia.com/terms/s/skewness.asp.
Returns:
- SeriesOrFloat_co
Skew of the return distribution. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.kurtosis
Kurtosis of the return distribution.
Reference: https://www.investopedia.com/terms/k/kurtosis.asp.
Returns:
- SeriesOrFloat_co
Kurtosis of the return distribution. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
- OpenFrame.z_score
Z-score.
Reference: https://www.investopedia.com/terms/z/zscore.asp.
Returns:
- SeriesOrFloat_co
Z-score as (last return - mean return) / standard deviation of returns. Returns float for OpenTimeSeries, Series[float] for OpenFrame.
Methods
Frame Management
- OpenFrame.merge_series(how='outer')[source]
Merge index of Pandas Dataframes of the constituent OpenTimeSeries.
- OpenFrame.trunc_frame(start_cut=None, end_cut=None, where='both')[source]
Truncate DataFrame such that all timeseries have the same time span.
- Parameters:
start_cut (dt.date | None) – New first date. Optional.
end_cut (dt.date | None) – New last date. Optional.
where (LiteralTrunc) – Determines where dataframe is truncated also when start_cut or end_cut is None. Defaults to both.
self (Self)
- Returns:
An OpenFrame object.
- Return type:
Self
- OpenFrame.add_timeseries(new_series)[source]
To add an OpenTimeSeries object.
Portfolio Analysis
- OpenFrame.relative(long_column=0, short_column=1, *, base_zero=True)[source]
Calculate cumulative relative return between two series.
- Parameters:
- Return type:
None
- OpenFrame.make_portfolio(name, weight_strat=None)[source]
Calculate a basket timeseries based on the supplied weights.
- OpenFrame.rebalanced_portfolio(name, items=None, bal_weights=None, frequency=1, cash_index=None, *, equal_weights=False, drop_extras=True)[source]
Create a rebalanced portfolio from the OpenFrame constituents.
- Parameters:
name (str) – Name of the portfolio.
items (list[str] | None) – List of items to include in the portfolio. If None, uses all items. Optional.
bal_weights (list[float] | None) – List of weights for rebalancing. If None, uses frame weights. Optional.
frequency (int) – Rebalancing frequency. Defaults to 1.
cash_index (OpenTimeSeries | None) – Cash index series for cash component. Optional.
equal_weights (bool) – If True, use equal weights for all items. Defaults to False.
drop_extras (bool) – If True, only return TWR series; if False, return all details. Defaults to True.
self (Self)
- Returns:
OpenFrame containing the rebalanced portfolio.
- Return type:
OpenFrame
Statistical Analysis
- OpenFrame.ord_least_squares_fit(y_column, x_column, *, fitted_series=True)[source]
Ordinary Least Squares fit.
Performs a linear regression and adds a new column with a fitted line using Ordinary Least Squares fit.
- Parameters:
y_column (tuple[str, ValueType] | int) – The column level values of the dependent variable y.
x_column (tuple[str, ValueType] | int) – The column level values of the exogenous variable x.
fitted_series (bool) – If True the fit is added as a new column in the .tsdf Pandas.DataFrame. Defaults to True.
self (Self)
- Returns:
A dictionary with the coefficient, intercept and rsquared outputs.
- Return type:
- OpenFrame.beta(asset, market, dlta_degr_freedms=1)[source]
Market Beta.
Calculates Beta as Co-variance of asset & market divided by Variance of the market.
Reference: https://www.investopedia.com/terms/b/beta.asp.
- Parameters:
- Returns:
Beta as Co-variance of x & y divided by Variance of x.
- Return type:
- OpenFrame.jensen_alpha(asset, market, riskfree_rate=0.0, dlta_degr_freedms=1)[source]
Jensen’s alpha.
The Jensen’s measure, or Jensen’s alpha, is a risk-adjusted performance measure that represents the average return on a portfolio or investment, above or below that predicted by the capital asset pricing model (CAPM), given the portfolio’s or investment’s beta and the average market return. This metric is also commonly referred to as simply alpha.
Reference: https://www.investopedia.com/terms/j/jensensmeasure.asp.
- Parameters:
asset (tuple[str, ValueType] | int) – The column of the asset.
market (tuple[str, ValueType] | int) – The column of the market against which Jensen’s alpha is measured.
riskfree_rate (float) – The return of the zero volatility riskfree asset. Defaults to 0.0.
dlta_degr_freedms (int) – Variance bias factor taking the value 0 or 1. Defaults to 1.
self (Self)
- Returns:
Jensen’s alpha.
- Return type:
- OpenFrame.tracking_error_func(base_column=-1, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Tracking Error.
Calculates Tracking Error which is the standard deviation of the difference between the fund and its index returns.
Reference: https://www.investopedia.com/terms/t/trackingerror.asp.
- Parameters:
base_column (tuple[str, ValueType] | int) – Column of timeseries that is the denominator in the ratio. Defaults to -1.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Tracking Errors.
- Return type:
Series[float]
- OpenFrame.info_ratio_func(base_column=-1, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Information Ratio.
The Information Ratio equals ( fund return less index return ) divided by the Tracking Error. And the Tracking Error is the standard deviation of the difference between the fund and its index returns. The ratio is calculated using the annualized arithmetic mean of returns.
- Parameters:
base_column (tuple[str, ValueType] | int) – Column of timeseries that is the denominator in the ratio. Defaults to -1.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Information Ratios.
- Return type:
Series[float]
- OpenFrame.capture_ratio_func(ratio, base_column=-1, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Capture Ratio.
The Up (Down) Capture Ratio is calculated by dividing the CAGR of the asset during periods that the benchmark returns are positive (negative) by the CAGR of the benchmark during the same periods. CaptureRatio.BOTH is the Up ratio divided by the Down ratio. Source: ‘Capture Ratios: A Popular Method of Measuring Portfolio Performance in Practice’, Don R. Cox and Delbert C. Goff, Journal of Economics and Finance Education (Vol 2 Winter 2013).
Reference: https://www.economics-finance.org/jefe/volume12-2/11ArticleCox.pdf.
- Parameters:
ratio (LiteralCaptureRatio) – The ratio to calculate.
base_column (tuple[str, ValueType] | int) – Column of timeseries that is the denominator in the ratio. Defaults to -1.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Capture Ratios.
- Return type:
Series[float]
- OpenFrame.multi_factor_linear_regression(dependent_column)[source]
Perform a multi-factor linear regression.
This function treats one specified column in the DataFrame as the dependent variable (y) and uses all remaining columns as independent variables (X). It utilizes a scikit-learn LinearRegression model and returns a DataFrame with summary output and an OpenTimeSeries of predicted values.
- Parameters:
- Returns:
A DataFrame with the R-squared, the intercept and the regression coefficients
An OpenTimeSeries of predicted values
- Return type:
A tuple containing
- Raises:
KeyError – If the column tuple is not found in the OpenFrame.tsdf.columns.
ValueError – If not all series are returnseries (ValueType.RTRN).
Rolling Analysis
- OpenFrame.rolling_info_ratio(long_column=0, short_column=1, observations=21, periods_in_a_year_fixed=None)[source]
Calculate rolling Information Ratio.
The Information Ratio equals ( fund return less index return ) divided by the Tracking Error. And the Tracking Error is the standard deviation of the difference between the fund and its index returns.
- Parameters:
long_column (int) – Column of timeseries that is the numerator in the ratio. Defaults to 0.
short_column (int) – Column of timeseries that is the denominator in the ratio. Defaults to 1.
observations (int) – The length of the rolling window to use is set as number of observations. Defaults to 21.
periods_in_a_year_fixed (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1), Le(le=366)])] | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Rolling Information Ratios.
- Return type:
- OpenFrame.rolling_beta(asset_column=0, market_column=1, observations=21, dlta_degr_freedms=1)[source]
Calculate rolling Market Beta.
Calculates Beta as Co-variance of asset & market divided by Variance of the market.
Reference: https://www.investopedia.com/terms/b/beta.asp.
- Parameters:
asset_column (int) – Column of timeseries that is the asset. Defaults to 0.
market_column (int) – Column of timeseries that is the market. Defaults to 1.
observations (int) – The length of the rolling window to use is set as number of observations. Defaults to 21.
dlta_degr_freedms (int) – Variance bias factor taking the value 0 or 1. Defaults to 1.
self (Self)
- Returns:
Rolling Betas.
- Return type:
- OpenFrame.rolling_corr(first_column=0, second_column=1, observations=21)[source]
Calculate rolling Correlation.
Calculates correlation between two series. The period with at least the given number of observations is the first period calculated.
- Parameters:
first_column (int) – The position as integer of the first timeseries to compare. Defaults to 0.
second_column (int) – The position as integer of the second timeseries to compare. Defaults to 1.
observations (int) – The length of the rolling window to use is set as number of observations. Defaults to 21.
self (Self)
- Returns:
Rolling Correlations.
- Return type:
- OpenFrame.rolling_return(column=0, observations=21)
Calculate rolling returns.
- OpenFrame.rolling_vol(column=0, observations=21, periods_in_a_year_fixed=None, dlta_degr_freedms=1)
Calculate rolling annualized volatilities.
- Parameters:
- Returns:
DataFrame with rolling annualized volatilities.
- Return type:
DataFrame
- OpenFrame.rolling_var_down(column=0, level=0.95, observations=252, interpolation='lower')
Calculate rolling annualized downside Value At Risk (VaR).
- Parameters:
- Returns:
DataFrame with rolling annualized downside VaR.
- Return type:
DataFrame
- OpenFrame.rolling_cvar_down(column=0, level=0.95, observations=252)
Calculate rolling annualized downside CVaR.
Correlation and Risk
- OpenFrame.correl_matrix
Correlation matrix.
This property returns the correlation matrix of the time series in the frame.
- Returns:
Correlation matrix of the time series in the frame.
- OpenFrame.ewma_risk(lmbda=0.94, day_chunk=11, dlta_degr_freedms=0, first_column=0, second_column=1, corr_scale=2.0, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Exponentially Weighted Moving Average Volatilities and Correlation.
Exponentially Weighted Moving Average (EWMA) for Volatilities and Correlation.
Reference: https://www.investopedia.com/articles/07/ewma.asp.
- Parameters:
lmbda (float) – Scaling factor to determine weighting. Defaults to 0.94.
day_chunk (int) – Sampling the data which is assumed to be daily. Defaults to 11.
dlta_degr_freedms (int) – Variance bias factor taking the value 0 or 1. Defaults to 0.
first_column (int) – Column of first timeseries. Defaults to 0.
second_column (int) – Column of second timeseries. Defaults to 1.
corr_scale (float) – Correlation scale factor. Defaults to 2.0.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Series volatilities and correlation.
- Return type:
DataFrame
Data Manipulation
- OpenFrame.align_index_to_local_cdays(countries=None, markets=None, custom_holidays=None, method='nearest')
Align the index of
.tsdfwith local calendar business days.- Parameters:
countries (CountriesType | None) – Country code(s) (ISO 3166-1 alpha-2).
markets (list[str] | str | None) – Market code(s) supported by
exchange_calendars.custom_holidays (list[str] | str | None) – Missing holidays that should be added.
method (LiteralPandasReindexMethod) – Method for reindexing when aligning to business days.
self (Self)
- Returns:
The modified object.
- Return type:
Self
- OpenFrame.resample(freq='BME')[source]
Resample the timeseries frequency.
- OpenFrame.resample_to_business_period_ends(freq='BME', method='nearest')[source]
Resamples timeseries frequency to the business calendar month end dates.
Stubs left in place. Stubs will be aligned to the shortest stub.
- Parameters:
- Returns:
An OpenFrame object.
- Return type:
- OpenFrame.value_nan_handle(method='fill')
Handle missing values in a value series.
- Parameters:
method (LiteralNanMethod) – Method used to handle NaN. Either
"fill"(last known) or"drop".self (Self)
- Returns:
The modified object.
- Return type:
Self
- OpenFrame.return_nan_handle(method='fill')
Handle missing values in a return series.
- Parameters:
method (LiteralNanMethod) – Method used to handle NaN. Either
"fill"(zero) or"drop".self (Self)
- Returns:
The modified object.
- Return type:
Self
Transformations
- OpenFrame.to_cumret()[source]
Convert series of returns into cumulative series of values.
- OpenFrame.value_to_ret()[source]
Convert series of values into series of returns.
- OpenFrame.value_to_diff(periods=1)[source]
Convert series of values to series of their period differences.
- OpenFrame.value_to_log()
Convert value series to log-weighted series.
Equivalent to
LN(value[t] / value[t=0])in Excel.
- OpenFrame.to_drawdown_series()
Convert timeseries into a drawdown series.
- OpenFrame.value_ret_calendar_period(year, month=None)
Calculate simple return for a specific calendar period.
Analysis Methods
- OpenFrame.calc_range(months_offset=None, from_dt=None, to_dt=None)
Create a user-defined date range aligned to index.
- Parameters:
- Returns:
A tuple
(earlier, later)representing the start and end date of the chosen date range aligned to existing index values.- Raises:
DateAlignmentError – If the implied range is outside series bounds.
- Return type:
- OpenFrame.outliers(threshold=3.0, months_from_last=None, from_date=None, to_date=None)
Detect outliers using z-score analysis.
Identifies data points where the absolute z-score exceeds the threshold. For OpenTimeSeries, returns a Series with dates and outlier values. For OpenFrame, returns a DataFrame with dates and outlier values for each column.
- Parameters:
- Returns:
Series of outliers. For OpenFrame: DataFrame of outliers. Empty if none found.
- Return type:
For OpenTimeSeries
Financial Metrics Methods
- OpenFrame.arithmetic_ret_func(months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)
Annualized arithmetic mean of returns.
Reference:
https://www.investopedia.com/terms/a/arithmeticmean.asp.- Parameters:
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
periods_in_a_year_fixed (DaysInYearType | None) – Lock periods-in-a-year to simplify tests and comparisons.
self (Self)
- Returns:
Annualized arithmetic mean of returns. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.geo_ret_func(months_from_last=None, from_date=None, to_date=None)
Compounded Annual Growth Rate (CAGR).
Reference:
https://www.investopedia.com/terms/c/cagr.asp.- Parameters:
- Returns:
CAGR. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Raises:
InitialValueZeroError – If initial value is zero or there are negative values.
- Return type:
SeriesOrFloat_co
- OpenFrame.value_ret_func(months_from_last=None, from_date=None, to_date=None)
Calculate simple return.
- Parameters:
- Returns:
Simple return. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Raises:
InitialValueZeroError – If initial value is zero.
- Return type:
SeriesOrFloat_co
- OpenFrame.vol_func(months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)
Annualized volatility.
Based on
pandas.Series.std()(ExcelSTDEV.Sequivalent). Reference:https://www.investopedia.com/terms/v/volatility.asp.- Parameters:
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
periods_in_a_year_fixed (DaysInYearType | None) – Lock periods-in-a-year to simplify tests and comparisons.
self (Self)
- Returns:
Annualized volatility. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.lower_partial_moment_func(min_accepted_return=0.0, order=2, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)
Lower partial moment and downside deviation (order=2).
If
orderis 2 calculates standard deviation of returns below MAR=0. For general orderp, returns(LPM_p)^(1/p).- Parameters:
min_accepted_return (float) – Annualized Minimum Accepted Return (MAR).
order (Literal[2, 3]) – Order of partial moment (2 or 3).
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
periods_in_a_year_fixed (DaysInYearType | None) – Lock periods-in-a-year to simplify tests and comparisons.
self (Self)
- Returns:
Downside deviation if
orderis 2; otherwise rooted lower partial moment. Float for OpenTimeSeries,Series[float]for OpenFrame.- Raises:
ValueError – If
orderis not 2 or 3.- Return type:
SeriesOrFloat_co
- OpenFrame.ret_vol_ratio_func(riskfree_rate=0.0, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)
Ratio between arithmetic mean of returns and annualized volatility.
If
riskfree_rateprovided, computes the Sharpe ratio as(arithmetic return - risk-free) / volatility. Assumes zero volatility for the risk-free asset. Reference:https://www.investopedia.com/terms/s/sharperatio.asp.- Parameters:
riskfree_rate (float) – Return of the zero volatility asset.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
periods_in_a_year_fixed (DaysInYearType | None) – Lock periods-in-a-year to simplify tests and comparisons.
self (Self)
- Returns:
Ratio value. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.sortino_ratio_func(riskfree_rate=0.0, min_accepted_return=0.0, order=2, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)
Sortino ratio or Kappa-3 ratio.
Sortino:
(return - riskfree_rate) / downside deviationusing arithmetic mean of returns. Kappa-3 whenorder=3penalizes larger downside more than Sortino.- Parameters:
riskfree_rate (float) – Return of the zero volatility asset.
min_accepted_return (float) – Annualized Minimum Accepted Return (MAR).
order (Literal[2, 3]) – Order of partial moment (2 for Sortino, 3 for Kappa-3).
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
periods_in_a_year_fixed (DaysInYearType | None) – Lock periods-in-a-year to simplify tests and comparisons.
self (Self)
- Returns:
Ratio value. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.omega_ratio_func(min_accepted_return=0.0, months_from_last=None, from_date=None, to_date=None)
Omega Ratio.
Compares returns above MAR to the total downside risk below MAR. Reference:
https://en.wikipedia.org/wiki/Omega_ratio.- Parameters:
- Returns:
Omega ratio. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.var_down_func(level=0.95, months_from_last=None, from_date=None, to_date=None, interpolation='lower')
Downside Value At Risk (VaR).
Equivalent to
PERCENTILE.INC(returns, 1-level)in Excel. Reference:https://www.investopedia.com/terms/v/var.asp.- Parameters:
level (float) – The sought VaR level.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
interpolation (LiteralQuantileInterp) – Interpolation used by
DataFrame.quantile.self (Self)
- Returns:
Downside VaR. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.cvar_down_func(level=0.95, months_from_last=None, from_date=None, to_date=None)
Downside Conditional Value At Risk (CVaR).
Reference:
https://www.investopedia.com/terms/c/conditional_value_at_risk.asp.- Parameters:
- Returns:
Downside CVaR. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.worst_func(observations=1, months_from_last=None, from_date=None, to_date=None)
Most negative percentage change over a rolling window.
- Parameters:
- Returns:
Most negative percentage change. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.max_drawdown_func(months_from_last=None, from_date=None, to_date=None, min_periods=1)
Maximum drawdown without any limit on date range.
Reference:
https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp.- Parameters:
- Returns:
Maximum drawdown. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.positive_share_func(months_from_last=None, from_date=None, to_date=None)
Share of percentage changes greater than zero.
- Parameters:
- Returns:
Share of positive returns. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.vol_from_var_func(level=0.95, months_from_last=None, from_date=None, to_date=None, interpolation='lower', periods_in_a_year_fixed=None, *, drift_adjust=False)
Implied annualized volatility from downside VaR.
Assumes normally distributed returns.
- Parameters:
level (float) – The sought VaR level.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
interpolation (LiteralQuantileInterp) – Interpolation type used by
DataFrame.quantile.periods_in_a_year_fixed (DaysInYearType | None) – Lock periods-in-a-year to simplify tests and comparisons.
drift_adjust (bool) – Adjustment to remove the bias implied by the average return.
self (Self)
- Returns:
Implied annualized volatility. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.skew_func(months_from_last=None, from_date=None, to_date=None)
Skew of the return distribution.
Reference:
https://www.investopedia.com/terms/s/skewness.asp.- Parameters:
- Returns:
Skewness. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.kurtosis_func(months_from_last=None, from_date=None, to_date=None)
Kurtosis of the return distribution.
Reference:
https://www.investopedia.com/terms/k/kurtosis.asp.- Parameters:
- Returns:
Kurtosis. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.z_score_func(months_from_last=None, from_date=None, to_date=None)
Z-score of the last return.
Computed as
(last return - mean return) / std dev of returns. Reference:https://www.investopedia.com/terms/z/zscore.asp.- Parameters:
- Returns:
Z-score. Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
- OpenFrame.target_weight_from_var(target_vol=0.175, level=0.95, min_leverage_local=0.0, max_leverage_local=99999.0, months_from_last=None, from_date=None, to_date=None, interpolation='lower', periods_in_a_year_fixed=None, *, drift_adjust=False)
Target weight from VaR.
Computes a position weight multiplier from the ratio between a VaR implied volatility and a given target volatility. Multiplier = 1.0 → target met.
- Parameters:
target_vol (float) – Target volatility.
level (float) – The sought VaR level.
min_leverage_local (float) – Minimum adjustment factor.
max_leverage_local (float) – Maximum adjustment factor.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of
from_dateandto_date.from_date (dt.date | None) – Specific from date.
to_date (dt.date | None) – Specific to date.
interpolation (LiteralQuantileInterp) – Interpolation type used by
DataFrame.quantile.periods_in_a_year_fixed (DaysInYearType | None) – Lock periods-in-a-year to simplify tests and comparisons.
drift_adjust (bool) – Adjustment to remove the bias implied by the average return.
self (Self)
- Returns:
Weight multiplier (or implied volatility if used downstream). Float for OpenTimeSeries,
Series[float]for OpenFrame.- Return type:
SeriesOrFloat_co
Visualization
The plotting methods generate fully responsive HTML output that automatically adapts to different screen sizes and device orientations. Plots are optimized for both desktop and mobile viewing with separate title containers and responsive CSS styling.
- OpenFrame.plot_series(mode='lines', title=None, tick_fmt=None, filename=None, directory=None, labels=None, output_type='file', include_plotlyjs='cdn', *, auto_open=True, add_logo=True, show_last=False)
Create a Plotly Scatter Figure.
- Parameters:
mode (LiteralLinePlotMode) – The type of scatter to use.
title (str | None) – A title above the plot.
tick_fmt (str | None) – Tick format for the y-axis, e.g.
'%'or'.1%'.filename (str | None) – Name of the Plotly HTML file.
directory (DirectoryPath | None) – Directory where the Plotly HTML file is saved.
labels (list[str] | None) – Labels to override the column names of
self.tsdf.output_type (LiteralPlotlyOutput) – Determines output type.
include_plotlyjs (LiteralPlotlyJSlib) – How the plotly.js library is included.
auto_open (bool) – Whether to open a browser window with the plot.
add_logo (bool) – If True, a Captor logo is added to the plot.
show_last (bool) – If True, highlight the last point in red with a label.
self (Self)
- Returns:
A tuple
(figure, output)whereoutputis either a div string or a file path.- Return type:
- OpenFrame.plot_bars(mode='group', title=None, tick_fmt=None, filename=None, directory=None, labels=None, output_type='file', include_plotlyjs='cdn', *, auto_open=True, add_logo=True)
Create a Plotly Bar Figure.
- Parameters:
mode (LiteralBarPlotMode) – The type of bar to use.
title (str | None) – A title above the plot.
tick_fmt (str | None) – Tick format for the y-axis, e.g.
'%'or'.1%'.filename (str | None) – Name of the Plotly HTML file.
directory (DirectoryPath | None) – Directory where the Plotly HTML file is saved.
labels (list[str] | None) – Labels to override the column names of
self.tsdf.output_type (LiteralPlotlyOutput) – Determines output type.
include_plotlyjs (LiteralPlotlyJSlib) – How the plotly.js library is included.
auto_open (bool) – Whether to open a browser window with the plot.
add_logo (bool) – If True, a Captor logo is added to the plot.
self (Self)
- Returns:
A tuple
(figure, output)whereoutputis either a div string or a file path.- Return type:
- OpenFrame.plot_histogram(plot_type='bars', histnorm='probability', barmode='overlay', xbins_size=None, opacity=0.75, bargap=0.0, bargroupgap=0.0, curve_type='kde', title=None, x_fmt=None, y_fmt=None, filename=None, directory=None, labels=None, output_type='file', include_plotlyjs='cdn', *, cumulative=False, show_rug=False, auto_open=True, add_logo=True)
Create a Plotly Histogram Figure.
- Parameters:
plot_type (LiteralPlotlyHistogramPlotType) – Type of plot,
"bars"or"lines".histnorm (LiteralPlotlyHistogramHistNorm) – Normalization mode.
barmode (LiteralPlotlyHistogramBarMode) – How bar traces are displayed relative to one another.
xbins_size (float | None) – Width of each bin along the x-axis in data units.
opacity (float) – Trace opacity between 0 and 1.
bargap (float) – Gap between bars of adjacent location coordinates.
bargroupgap (float) – Gap between bar groups at the same location coordinate.
curve_type (LiteralPlotlyHistogramCurveType) – Type of distribution curve to overlay on the histogram.
title (str | None) – A title above the plot.
x_fmt (str | None) – Tick format for the x-axis.
y_fmt (str | None) – Tick format for the y-axis.
filename (str | None) – Name of the Plotly HTML file.
directory (DirectoryPath | None) – Directory where the Plotly HTML file is saved.
labels (list[str] | None) – Labels to override the column names of
self.tsdf.output_type (LiteralPlotlyOutput) – Determines output type.
include_plotlyjs (LiteralPlotlyJSlib) – How the plotly.js library is included.
cumulative (bool) – Whether to compute a cumulative histogram.
show_rug (bool) – Whether to draw a rug plot alongside the distribution.
auto_open (bool) – Whether to open a browser window with the plot.
add_logo (bool) – If True, a Captor logo is added to the plot.
self (Self)
- Returns:
A tuple
(figure, output)whereoutputis either a div string or a file path.- Return type:
Export Methods
- OpenFrame.to_json(what_output, filename, directory=None)
Dump timeseries data into a JSON file.
- Parameters:
what_output (LiteralJsonOutput) – Whether to export raw values or
tsdfvalues.filename (str) – Filename including extension.
directory (DirectoryPath | None) – Folder where the file will be written.
self (Self)
- Returns:
A list of dictionaries with the data of the series.
- Return type:
list[dict[str, str | bool | ValueType | list[str] | list[float]]]
- OpenFrame.to_xlsx(filename, sheet_title=None, directory=None, *, overwrite=True)
Save
.tsdfDataFrame to an Excel spreadsheet file.- Parameters:
- Returns:
The Excel file path.
- Raises:
NameError – If
filenamedoes not end with.xlsx.FileExistsError – If the file exists and
overwriteis False.
- Return type: