openseries.OpenTimeSeries
- class openseries.OpenTimeSeries(*, tsdf, timeseries_id, instrument_id, name, valuetype, dates, values, local_ccy, currency, domestic='SEK', countries='SE', markets=None, isin=None, label=None)[source]
Bases:
_CommonModel[float]OpenTimeSeries objects are at the core of the openseries package.
The intended use is to allow analyses of financial timeseries. It is only intended for daily or less frequent data samples.
- Parameters:
timeseries_id (str) – Database identifier of the timeseries.
instrument_id (str) – Database identifier of the instrument associated with the timeseries.
name (str) – String identifier of the timeseries and/or instrument.
valuetype (ValueType) – Identifies if the series is a series of values or returns.
dates (Annotated[list[Annotated[str, StringConstraints(strip_whitespace=True, to_upper=None, to_lower=None, strict=True, min_length=10, max_length=10, pattern=^\d{4}-(0[1-9]|1[0-2])-(0[1-9]|[12]\d|3[01])$)]], MinLen(min_length=1)]) – Dates of the individual timeseries items. These dates will not be altered by methods.
values (Annotated[list[float], MinLen(min_length=1)]) – The value or return values of the timeseries items. These values will not be altered by methods.
local_ccy (bool) – Boolean flag indicating if timeseries is in local currency.
tsdf (DataFrame) – Pandas object holding dates and values that can be altered via methods.
currency (Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=True, min_length=3, max_length=3, pattern=^[A-Z]{3}$)]) – ISO 4217 currency code of the timeseries.
domestic (Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=True, min_length=3, max_length=3, pattern=^[A-Z]{3}$)]) – ISO 4217 currency code of the user’s home currency. Defaults to “SEK”.
countries (Annotated[set[Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=True, min_length=2, max_length=2, pattern=^[A-Z]{2}$)]], MinLen(min_length=1)] | Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=True, min_length=2, max_length=2, pattern=^[A-Z]{2}$)]) – (List of) country code(s) according to ISO 3166-1 alpha-2. Defaults to “SE”.
markets (list[str] | str | None) – (List of) markets code(s) supported by exchange_calendars. Optional.
isin (str | None) – ISO 6166 identifier code of the associated instrument. Optional.
label (str | None) – Placeholder for a name of the timeseries. Optional.
- __init__(**data)
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
align_index_to_local_cdays([countries, ...])Align the index of
.tsdfwith local calendar business days.all_properties([properties])Calculate chosen properties.
arithmetic_ret_func([months_from_last, ...])Annualized arithmetic mean of returns.
calc_range([months_offset, from_dt, to_dt])Create a user-defined date range aligned to index.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
cvar_down_func([level, months_from_last, ...])Downside Conditional Value At Risk (CVaR).
dict(*[, include, exclude, by_alias, ...])ewma_vol_func([lmbda, day_chunk, ...])Exponentially Weighted Moving Average Model for Volatility.
from_1d_rate_to_cumret([days_in_year, divider])Convert series of 1-day rates into series of cumulative values.
from_arrays(name, dates, values[, ...])Create series from a list of dates and a list of values.
from_deepcopy()Create copy of OpenTimeSeries object.
from_df(dframe[, column_nmbr, valuetype, ...])Create series from a Pandas DataFrame or Series.
from_fixed_rate(rate[, d_range, days, ...])Create series from values accruing with a given fixed rate return.
from_orm(obj)geo_ret_func([months_from_last, from_date, ...])Compounded Annual Growth Rate (CAGR).
json(*[, include, exclude, by_alias, ...])kurtosis_func([months_from_last, from_date, ...])Kurtosis of the return distribution.
lower_partial_moment_func([...])Lower partial moment and downside deviation (order=2).
max_drawdown_func([months_from_last, ...])Maximum drawdown without any limit on date range.
model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, ensure_ascii, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, extra, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
omega_ratio_func([min_accepted_return, ...])Omega Ratio.
outliers([threshold, months_from_last, ...])Detect outliers using z-score analysis.
pandas_df()Populate .tsdf Pandas DataFrame from the .dates and .values lists.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])plot_bars([mode, title, tick_fmt, filename, ...])Create a Plotly Bar Figure.
plot_histogram([plot_type, histnorm, ...])Create a Plotly Histogram Figure.
plot_series([mode, title, tick_fmt, ...])Create a Plotly Scatter Figure.
positive_share_func([months_from_last, ...])Share of percentage changes greater than zero.
resample([freq])Resamples the timeseries frequency.
resample_to_business_period_ends([freq, method])Resamples timeseries frequency to the business calendar month end dates.
ret_vol_ratio_func([riskfree_rate, ...])Ratio between arithmetic mean of returns and annualized volatility.
return_nan_handle([method])Handle missing values in a return series.
rolling_cvar_down([column, level, observations])Calculate rolling annualized downside CVaR.
rolling_return([column, observations])Calculate rolling returns.
rolling_var_down([column, level, ...])Calculate rolling annualized downside Value At Risk (VaR).
rolling_vol([column, observations, ...])Calculate rolling annualized volatilities.
running_adjustment(adjustment[, days_in_year])Add or subtract a fee from the timeseries return.
schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])set_new_label([lvl_zero, lvl_one, ...])Set the column labels of the .tsdf Pandas Dataframe.
skew_func([months_from_last, from_date, to_date])Skew of the return distribution.
sortino_ratio_func([riskfree_rate, ...])Sortino ratio or Kappa-3 ratio.
target_weight_from_var([target_vol, level, ...])Target weight from VaR.
to_cumret()Convert series of returns into cumulative series of values.
to_drawdown_series()Convert timeseries into a drawdown series.
to_json(what_output, filename[, directory])Dump timeseries data into a JSON file.
to_xlsx(filename[, sheet_title, directory, ...])Save
.tsdfDataFrame to an Excel spreadsheet file.update_forward_refs(**localns)validate(value)value_nan_handle([method])Handle missing values in a value series.
value_ret_calendar_period(year[, month])Calculate simple return for a specific calendar period.
value_ret_func([months_from_last, ...])Calculate simple return.
value_to_diff([periods])Convert series of values to series of their period differences.
value_to_log()Convert value series to log-weighted series.
value_to_ret()Convert series of values into series of returns.
var_down_func([level, months_from_last, ...])Downside Value At Risk (VaR).
vol_from_var_func([level, months_from_last, ...])Implied annualized volatility from downside VaR.
vol_func([months_from_last, from_date, ...])Annualized volatility.
worst_func([observations, months_from_last, ...])Most negative percentage change over a rolling window.
z_score_func([months_from_last, from_date, ...])Z-score of the last return.
Attributes
arithmetic_retAnnualized arithmetic mean of returns.
cvar_downDownside 95% Conditional Value At Risk "CVaR".
downside_deviationDownside Deviation.
first_idxThe first date in the timeseries.
geo_retCompounded Annual Growth Rate (CAGR).
kappa3_ratioKappa-3 ratio.
kurtosisKurtosis of the return distribution.
last_idxThe last date in the timeseries.
lengthNumber of observations.
max_drawdownMaximum drawdown without any limit on date range.
max_drawdown_cal_yearMaximum drawdown in a single calendar year.
max_drawdown_dateDate when the maximum drawdown occurred.
model_computed_fieldsmodel_configConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
omega_ratioOmega ratio.
periods_in_a_yearThe average number of observations per year.
positive_shareThe share of percentage changes that are greater than zero.
ret_vol_ratioRatio of annualized arithmetic mean of returns and annualized volatility.
skewSkew of the return distribution.
sortino_ratioSortino ratio.
span_of_daysNumber of days from the first date to the last.
value_retSimple return.
var_downDownside 95% Value At Risk (VaR).
volAnnualized volatility.
vol_from_varImplied annualized volatility from Downside 95% Value at Risk.
worstMost negative percentage change.
worst_monthMost negative month.
yearfracLength of series in years assuming 365.25 days per year.
z_scoreZ-score.
timeseries_idinstrument_idnamevaluetypedatesvalueslocal_ccytsdfcurrencydomesticcountriesmarketsisinlabel- timeseries_id: str
- instrument_id: str
- name: str
- valuetype: ValueType
- dates: DateListType
- values: ValueListType
- local_ccy: bool
- tsdf: DataFrame
- currency: CurrencyStringType
- domestic: CurrencyStringType
- countries: CountriesType
- classmethod from_arrays(name, dates, values, valuetype=ValueType.PRICE, timeseries_id='', instrument_id='', isin=None, baseccy='SEK', *, local_ccy=True)[source]
Create series from a list of dates and a list of values.
- Parameters:
name (str) – String identifier of the timeseries and/or instrument.
dates (Annotated[list[Annotated[str, StringConstraints(strip_whitespace=True, to_upper=None, to_lower=None, strict=True, min_length=10, max_length=10, pattern=^\d{4}-(0[1-9]|1[0-2])-(0[1-9]|[12]\d|3[01])$)]], MinLen(min_length=1)]) – List of date strings as ISO 8601 YYYY-MM-DD.
values (Annotated[list[float], MinLen(min_length=1)]) – Array of float values.
valuetype (ValueType) – Identifies if the series is a series of values or returns. Defaults to ValueType.PRICE.
timeseries_id (str) – Database identifier of the timeseries. Optional.
instrument_id (str) – Database identifier of the instrument associated with the timeseries. Optional.
isin (str | None) – ISO 6166 identifier code of the associated instrument. Optional.
baseccy (Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=True, min_length=3, max_length=3, pattern=^[A-Z]{3}$)]) – ISO 4217 currency code of the timeseries. Defaults to “SEK”.
local_ccy (bool) – Boolean flag indicating if timeseries is in local currency. Defaults to True.
- Returns:
An OpenTimeSeries object.
- Return type:
- classmethod from_df(dframe, column_nmbr=0, valuetype=ValueType.PRICE, baseccy='SEK', *, local_ccy=True)[source]
Create series from a Pandas DataFrame or Series.
- Parameters:
dframe (Series[float] | DataFrame) – Pandas DataFrame or Series.
column_nmbr (int) – Using iloc[:, column_nmbr] to pick column. Defaults to 0.
valuetype (ValueType) – Identifies if the series is a series of values or returns. Defaults to ValueType.PRICE.
baseccy (CurrencyStringType) – ISO 4217 currency code of the timeseries. Defaults to “SEK”.
local_ccy (bool) – Boolean flag indicating if timeseries is in local currency. Defaults to True.
- Returns:
An OpenTimeSeries object.
- Raises:
TypeError – If
dframeis not apandas.Seriesor apandas.DataFrame.- Return type:
Self
- classmethod from_fixed_rate(rate, d_range=None, days=None, end_dt=None, label='Series', valuetype=ValueType.PRICE, baseccy='SEK', *, local_ccy=True)[source]
Create series from values accruing with a given fixed rate return.
Providing a date_range of type Pandas DatetimeIndex takes priority over providing a combination of days and an end date.
- Parameters:
rate (float) – The accrual rate.
d_range (DatetimeIndex | None) – A given range of dates. Optional.
days (int | None) – Number of days to generate when date_range not provided. Must be combined with end_dt. Optional.
end_dt (date | None) – End date of date range to generate when date_range not provided. Must be combined with days. Optional.
label (str) – Placeholder for a name of the timeseries.
valuetype (ValueType) – Identifies if the series is a series of values or returns. Defaults to ValueType.PRICE.
baseccy (Annotated[str, StringConstraints(strip_whitespace=True, to_upper=True, to_lower=None, strict=True, min_length=3, max_length=3, pattern=^[A-Z]{3}$)]) – The currency of the timeseries. Defaults to “SEK”.
local_ccy (bool) – Boolean flag indicating if timeseries is in local currency. Defaults to True.
- Returns:
An OpenTimeSeries object.
- Raises:
IncorrectArgumentComboError – If
d_rangeis not provided and the combination ofdaysandend_dtis incomplete.- Return type:
- from_deepcopy()[source]
Create copy of OpenTimeSeries object.
- pandas_df()[source]
Populate .tsdf Pandas DataFrame from the .dates and .values lists.
- all_properties(properties=None)[source]
Calculate chosen properties.
- Parameters:
properties (list[Literal['value_ret', 'geo_ret', 'arithmetic_ret', 'vol', 'downside_deviation', 'ret_vol_ratio', 'sortino_ratio', 'kappa3_ratio', 'z_score', 'skew', 'kurtosis', 'positive_share', 'var_down', 'cvar_down', 'vol_from_var', 'worst', 'worst_month', 'max_drawdown_cal_year', 'max_drawdown', 'max_drawdown_date', 'first_idx', 'last_idx', 'length', 'span_of_days', 'yearfrac', 'periods_in_a_year']] | None) – The properties to calculate. Defaults to calculating all available. Optional.
self (Self)
- Returns:
Properties of the OpenTimeSeries.
- Return type:
- value_to_ret()[source]
Convert series of values into series of returns.
- value_to_diff(periods=1)[source]
Convert series of values to series of their period differences.
- to_cumret()[source]
Convert series of returns into cumulative series of values.
- from_1d_rate_to_cumret(days_in_year=365, divider=1.0)[source]
Convert series of 1-day rates into series of cumulative values.
- resample(freq='BME')[source]
Resamples the timeseries frequency.
- resample_to_business_period_ends(freq='BME', method='nearest')[source]
Resamples timeseries frequency to the business calendar month end dates.
Stubs left in place. Stubs will be aligned to the shortest stub.
- Parameters:
- Returns:
An OpenTimeSeries object.
- Raises:
ResampleDataLossError – If called on a return series (
valuetypeisValueType.RTRN), since summation across sparser frequency would be required to avoid data loss.- Return type:
- ewma_vol_func(lmbda=0.94, day_chunk=11, dlta_degr_freedms=0, months_from_last=None, from_date=None, to_date=None, periods_in_a_year_fixed=None)[source]
Exponentially Weighted Moving Average Model for Volatility.
Reference: https://www.investopedia.com/articles/07/ewma.asp.
- Parameters:
lmbda (float) – Scaling factor to determine weighting. Defaults to 0.94.
day_chunk (int) – Sampling the data which is assumed to be daily. Defaults to 11.
dlta_degr_freedms (int) – Variance bias factor taking the value 0 or 1. Defaults to 0.
months_from_last (int | None) – Number of months offset as positive integer. Overrides use of from_date and to_date. Optional.
from_date (dt.date | None) – Specific from date. Optional.
to_date (dt.date | None) – Specific to date. Optional.
periods_in_a_year_fixed (DaysInYearType | None) – Allows locking the periods-in-a-year to simplify test cases and comparisons. Optional.
self (Self)
- Returns:
Series EWMA volatility.
- Return type:
Series[float]
- running_adjustment(adjustment, days_in_year=365)[source]
Add or subtract a fee from the timeseries return.
- set_new_label(lvl_zero=None, lvl_one=None, *, delete_lvl_one=False)[source]
Set the column labels of the .tsdf Pandas Dataframe.
- model_config = {'arbitrary_types_allowed': True, 'revalidate_instances': 'always', 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].